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Developed countries increasingly rely on gas storage

for security of supply. Widespread deregulation has

created markets that help assign an objective value

to existing and planned storages. Storage valuation

is nevertheless a challenging task if we consider both

the financial and physical aspects of storage. In this

article, we develop a Monte Carlo valuation method,

which can incorporate realistic gas price dynamics

and complex physical constraints. Specifically, we

extend the Least Squares Monte Carlo method for

American options to storage valuation. We include

numerical results and show ways to improve com-

putational speed.

T
he natural gas industry has under-
gone market reforms in many
countries around the world. As part
of this process, the role of storage

in the gas market has changed. Traditionally,
storages were owned by utilities for balancing
the variability in demand of their customers.
As a result of the deregulation in the U.S.
and Europe, the natural gas storage service is
now unbundled from the sales and trans-
portation services, meaning that storage is
offered as a distinct, separately charged ser-
vice. In combination with the development
of active spot and futures markets, it has
become possible to adjust storage trading
decisions to price conditions.

Storage is ultimately needed to ensure
security of supply. The seasonal demand for

gas is traditionally linked to gas heating of
houses, resulting in higher gas demand in
winter than in summer. Other seasonal pat-
terns are mainly related to the operation of
gas-fired power plants. These plants are often
designed for peak delivery (creating a day-
night pattern in gas demand) and perform real-
time balancing (creating an intraday pattern in
gas demand). The flexibility in supply needed
to match the demand can be delivered in sev-
eral ways. Besides the usage of gas storages,
one option is to regulate the output from gas
fields to match the current demand. This can
only be done as long as the fields are reason-
ably full and close to the gas grid. Finally, on
a short-term basis line packing can be used.
This means that the volume in the pipeline
system is temporarily increased.

While gas demand in the U.S., Europe
and Asia is growing year on year, the indige-
nous production flexibility is steadily falling.
This explains the growing interest in investing
in new gas storage facilities. The Interna-
tional Energy Agency [2004] estimates that
the global underground storage capacity will
double in the next 30 years (2000-2030),
requiring an estimated annual investment in
storages of between $10 and $20 billion.
Additional flexibility in supply will come
from the fast growing sector of Hquified nat-
ural gas (LNG). The LNG-chain consists of
liquefaction plants, LNG-ships, LNG-storage
tanks and regasification plants. The combined

SPRING 2008 THE JOURNAL OF DERIVATIVES 8 1



investment in this flexible LNG supply chain is expected
to be $25 to $40 billion.

These market developments call for accurate invest-
ment analysis methodologies, incorporating the various
operating characteristics of storages and the random nature
of natural gas prices. In this article we explore such a
methodology, applicable both to real physical storage facil-
ities as well as financial storage flexibility contracts. We
will adapt existing option pricing methodologies to the
more diflicult problem of gas storage. The method is a
generalization of the Least Squares Monte Carlo (LSM)
approach for the valuation of American options described
in Carrière [1996] and LongstafFand Schwartz [2001].
LSM is particularly suited to energy market apphcations,
because one can separate the asset optimization (exercise
strategy) from the price evolution model. The latter is
often fairly complex and may be commodity specific due
to the very volatile nature of energy markets. Simultane-
ously, LSM allows for the incorporation of various types
of complex physical constraints into the exercise strategy.

In addition to facilitating the trading of gas storage,
the development of new storage facilities forms an impor-
tant apphcation of the proposed methodology. Before the
actual development, it should be decided how large the
facility should be and how much to invest in compressors,
which will, in turn, determine the injection and with-
drawal rates. These decisions cannot be made without a
clear understanding of the impact of operational charac-
teristics on the valuation of storage.

Our approach clarifies how the storage value depends
on operational constraints such as working volume (effec-
tive capacity) and injection and withdrawal rates (flexi-
bility). Although the exact operational constraints depend
on the storage under consideration, general settings may
be distinguished, dependent on the four different types of
storage (see Maragos [2002]): depleted, gas and oil fields
are often large but not so flexible; aquifers are typically
small and flexible; salt caverns fall somewhat in between;
and LNG-storages are very small and very flexible. Our
approach also shows the dependence of the storage value
on the dynamics of market prices, in particular, spot price
volatility, mean reversion, and seasonality.

The issue of storage valuation and optimal operation
is not limited to gas markets. Storages also play a significant
balancing role in, for example, oil markets, soft commodity
markets, and even electricity markets (through pumped-
storage hydropower stations). The principles of our approach
are applicable to those markets as well, as long as there is

fairly liquid spot trading in the underlying commodity, and
as long as the spot prices exhibit a fair amount of mean
reversion, a condition we will clarify further on.

The article proceeds as follows. In the following
section we review the literature, formally define a storage
contract, and present our valuation approach. The next
section is dedicated to numerical results. Then, we dis-
cuss computational issues and ways to improve perfor-
mance. In the last section we conclude.

VALUATION

In this section we discuss the valuation of a storage
contract. In the first two subsections, we review the avail-
able literature and make the choice for a spot-based Monte
Carlo approach. In the next two subsections, we define
the storage valuation contract and show its relationship to
other options. Then, we introduce the valuation problem
and explain our methodology. We end the section with
theoretical and empirical convergence results which are
available in the literature.

Forward-based Valuation

A storage operator owns the flexibility to inject and
withdraw gas at any moment in the future. The task is to
find the optimal operation (injection and withdrawal) of
the storage, depending on current and expected gas prices.
In short, two characteristics of gas prices allow a storage
operator to maximize its value: predictable price move-
ments (seasonality) and unpredictable price fluctuations
(volatility). The basic approach to storage valuation is to
calculate the optimal position given the available forward
curve and take this position on the forward market. This
intrinsic value approach captures the predictable seasonal
pattern in gas prices and secures a sure profit. Additional
value (extrinsic value) can be created by reacting to the
price fluctuations on the spot market. A storage operator
must thus choose between operating on the forward
market (and perform a forward-based valuation) and oper-
ating on the spot market (and perform a spot-based val-
uation), or a combination of these.

In this article we follow the typical gas and power
market convention that defines spot trades as day-ahead. In
practice, a storage operator can switch operation from injec-
tion to withdrawal within just a few hours. This may create
additional value based on decisions for each individual hour
during the day. Although our method is also valid for hourly
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valuation, actual implementation is difficult due to (very)
limited liquidity in the hourly market.

To value a storage contract, we follow a spot trading
strategy, because it captures most of the contract's flexi-
bility. This can be related to an observation from Maragos
[2002] on the relationship between the storage value and
the risk of the operating strategy employed. He notes that
the value of storage increases with the amount of risk
taken. Or alternatively, risk decreases with the number
of hedges put in place. The spot-based valuation yields
high return under high risk, while the rolhng intrinsic
valuation yields a medium return under very low risk.
Because volatility and mean-reversion in gas spot mar-
kets are much larger than in gas forward markets, larger
profits can potentially he made in the spot market.

How much additional extrinsic value ahove the
intrinsic can be created using the spot-based approach
depends on the market and operational parameters. In
practice, most operators use a mixed strategy—after having
reserved part of the storage for internal portfoho man-
agement, part of the remaining trading capacity is secured
in the forward market and the remaining capacity is traded
on the spot market. In the next section, we demonstrate
through an example that the additional value of spot
trading is often substantial. A trader should be aware, how-
ever, that an active spot trading strategy may involve more
trading costs and that liquidity in the spot market may he
more limited than in the forward market.

Before we continue, let us compare our approach to
methods employing the forward or futures market. Gray
and Khandelwal [2004] propose a rolling intrinsic approach.
They propose that the holder captures the intrinsic value
at the start of the contract. When new forward prices arrive,
the holder calculates whether the profit of (partially)
unwinding his position and taking the optimal position
hased on these new prices outweighs the transaction costs.

The rolling intrinsic strategy yields extrinsic value
if a spread between different tradable months or quarters
changes sign and if it makes sense to swap trading deci-
sions. This strategy, though very safe, is not profit maxi-
mizing. First, prices from adjacent months and quarters,
where a swap may make sense, are often strongly corre-
lated. Second, because volatility in the forward market is
limited, the magnitude of the swap change will typically
remain small. Maragos [2002] describes a variant of this
rolling intrinsic approach by adjusting only the spot trades
to new information in the forward curve.

Spot-based valuation

For the valuation of the spot-based strategy, two
approaches are popular—stochastic control and Monte
Carlo. Examples of the stochastic control approach include
Thompson, Davison, and Rasmussen [2003] and Weston
[2002]. Their models are based on Bellman equations,
which are solved by means of a fmite difference method.
In the stochastic control approach there is a direct link
between the stochastic price process and the optimal
strategy. In the Monte Carlo approach the two are sepa-
rated. This means we can quickly experiment with dif-
ferent spot price processes, which is an advantage. Another
advantage of the Monte Carlo approach is the ease to incor-
porate additional operational constraints. Such operational
constraints often stem from the physical nature of the
storage. Examples include protection against rock defor-
mation, start-up and turning restrictions between injec-
tion and withdrawal, and volume-dependent injection
and withdrawal rates.' A disadvantage is that the Monte
Carlo approach is relatively slow. Computational issues
will therefore deserve particular attention. We discuss
computational issues later in the article.

Simulation techniques to price European-style options
have been in use for quite some time and were introduced
even before the binomial option pricing model (see Boyle
[1977]). Simulations are especially attractive in situations
with multiple stochastic factors. For quite some time, how-
ever, the pricing has been restricted to European, not Amer-
ican options. The first proposed solution for finding the
optimal early exercise strategy was Tilley [1993]. Broadie
and Detemple [2004] and Glasserman [2004] provide a
survey of valuation methods for both European and Amer-
ican options. Most methods determine a lower bound on
the option price based on the supremum over the payoff
from all potential exercise strategies. Recently, however, a
few articles have considered the dual problem of finding a
positive-biased estimate for the option price (see Haugh
and Kogan [2001]; Rogers [2002]; Andersen and Broadie
[2004], and Meinshausen and Hambly [2004]). The down-
side is that this results in a higher computational load, which
remains an issue in simulation-based methods.

In this article we have chosen to work with the Least
Squares Monte Carlo (LSM) method. The LSM method
has become a popular method to solve American option
pricing by simulation since the article by Longstaff and
Schwartz [2001]. Earlier variations of regression-based
simulation were given by Carrière [1996] and Tsitsiklis and
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van Roy [2001]. To our knowledge, LSM has been applied
to three different problems in the energy sector. De Jong
and Walet [2003] value storage, but do not mention details
on their implementation. Peterson and Gray [2004] and
Tseng and Barz [2002] show an application in the valu-
ation and optimal dispatching of power plants, whereas
Ghiuvea [2001]; Keppo [2004], and Thanawalla [2005]
value swing options.

Definition of a Storage Contract

We consider a financial storage contract from the per-
spective of the holder of the contract. We assume the con-
tract is signed at time t = 0 and settled at time t - T + 1.
The contract allows the holder to take a desired action at

any discrete date t = 1 T after the spot price S{t) is
revealed. For convenience we will call the basic time unit
a day and assume the spot price is known at the beginning
of the day. Every day the holder of a storage contract can
choose to inject gas, do nothing, or withdraw gas, within
certain volumetric limitations. In the remainder of this sub-
section the contract is specified.

The holder of the contract faces different payoffs
during the lifetime of the contract depending on his
strategy. We take an injection at day t as a positive volume
change, Av{t), and a withdrawal as a negative volume
change, Ai'(f). Note that at time í = 0 the holder cannot
take an action, and Af(O) •= 0, by definition. Positive
volume changes have to be bought at the market and rep-
resent costs. Negative volume changes can be sold at the
market and represent profits. We will assume the market
has incorporated all knowledge about the optimal usage
of storage into the prevailing forward curve and that the
market will not be influenced by our trades. Note these
points are of particular importance for a development
decision where the impact of an additional storage facility
on prices should be estimated.

We denote the (accumulated) volume in storage at
the start of day í by v{t). Thus, the holder can take his first
action at day 1, which results in a volume v{2) at the end
of day 1, which equals the volume at the start of day 2.
After noting At'(i) = v{t + 1) - f(i), we see the volume at
any day t can be expressed in terms of i/(0) and the strategy
followed of injecting and withdrawing:

(1)

We denote the payoff at day t by h{S{t), Av{t)) and
define for t = 0, ..., T :

Í
-c(S(í))Af(í) inject at day (

0 do nothing at day Í (2)

(f) withdraw at day t

where c{S{t)) and p(S(i)) represent the cost of injection
and profit of withdrawal. We allow these costs and profits
to include both transaction costs a and bid-ask spreads b:

(3)

(4)p{S{t)) ••= (1 - a,)S{t) -

for certain pre-defined constants a,, a^, b^b^^ R Q such
that c{S{t)) > 0 and p{S{t)) > 0. These conditions ensure
that the payoff/i(S(i), Ai/(i)) has the opposite sign of Av(t).
Note that in a world without transaction costs or bid-ask
spreads, we will have c{S{t)) = p{S{t)) = S{t). We denote
the interest rate by 5.

We assume the contract is settled the day after the
last trading date, that is at day T + 1. At settlement the
holder receives a potential penalty, denoted by q{S{T + 1),
v{T+ 1)), which niay depend on (the lack of) remaining
gas in the storage, current price level, and so on.

We assume two volumetric limitations on the
strategy are followed. First, the volume in storage must stay
between a minimum level y'""'(i) ^ 0 and a maximum level
i/'"''(i) f o r i = 1, ..., T + 1:

(5)

Allowing i/"''"(i) and v"'"'{t) to be time dependent
makes it possible to incorporate physical requirements. For
example, to protect against rock deformations we could
require a higher minimum level during a certain period in
the year. In a traded storage contract, f'"'"(i) and f """(i) are
usually constant. For convenience we call the minimum
allowed level the zero level, that is, min^ [i/"""(i)] '•= 0.

Second, the injection or withdrawal is limited per
day. Let us write

i™"(i, v{t)) < Av{t) < /"""(f, 1/(0) (6)

where ('"""(•) and i""''(-) are pre-defined functions of the
volume in storage i'(i) and time t. In practice, these
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functions are often constant with deviations at low and
high volumes. This is due to the fact that for low storage
volumes it is harder to •withdraw gas, while for high
storage volumes it is harder to inject gas. Note i"''"{-)
will normally be negative and associated with with-
drawal, whereas (""''(•) will normally be positive and
associated with injection.

Relation to American and Swing Options

The holder of a storage contract is faced with a
timing problem of when to inject and when to withdraw.
A similar timing problem can be found in an American
option where the holder has to decide when to exercise
his option.^ Compared to an American option, the storage
contract has the following special features:

• Storage holder must decide among multiple actions
at all moments in time

• Storage holder has to comply with volumetric
restrictions

• Storage contract can have payoffs at several moments
in time

• Storage contract can have positive and negative
payoffs

An American option is a special case of a storage con-
tract. To see this, consider a storage with the following
characteristics: y(0) := 1, y'"'"(f) := 0, ^""''(i) := 1. Suppose
there is no possibility to inject, that is, ¿'"'̂  := 0, and we have
to withdraw one unit if we decide to withdraw, that is,
r " := - 1 . If we then set a^ := 0, b^ := Kin Equation (4)
and refrain from a penalty at settlement, we are valuing an
American option with strike K.

Another related option is the swing option. This
option allows the holder multiple exercises (rights) during
the contract. If the holder uses a right, he can decide
whether he would like to get a positive or negative adjust-
ment on the contracted volume. As in storage, there is
often a penalty if the fmal accumulated volume adjustment
deviates from zero. We can see a storage contract as a
swing option with as many rights as exercise dates, but
with a restriction on the accumulated adjustments.

Valuation of a Storage Contract

The value of a storage contract is the expected value
of the accumulated future payoffs h{S{t), Av{t)) under the

most optimal strategy 7t. Thus, we need to consider the
following pricing problem:

supE

(7)

This above expectation is assumed to be under a
risk-neutral pricing measure. In complete markets this
measure is unique, ensuring only one arbitrage-free price
of the storage contract. To hedge a storage contract with
basic securities other than a physical storage is not pos-
sible. From one perspective, we may conclude that the
gas market is incomplete. From another perspective, one
should remember that the purpose of physical storages
and financial storage contracts is to cover demand varia-
tion, which helps to complete the market. Whatever the
level of market completeness, in our valuation we will
use risk-neutral pricing and assume there exists a risk pre-
mium to compensate the holders of the residual risk.
Specifically, we will assume the risk premium is incor-
porated in the drift of the spot price process, as is a
common approach in energy markets (see, e.g., Lucia and
Schwartz [2002]).

As storage has volumetric restrictions, we explicitly
incorporate dependence on volume into the optimal strategy
n= {7t{U S(l), v{l)), ..., n{T, S{T), u{T))} where n{t, S{t),
v{t)) is the decision rule at day t with spot price S{t) being
at volume f(i). The problem wiU be formulated as a dynamic
program. Because the dynamic program will be solved back-
ward in time, the holder does not know which volume
levels will be visited. This means he has to find a decision
rule at every time t for all possible volume levels.

For convenience, let us introduce two sets. The set
o{ allowed volume levels at day í is denoted by V((),

(8)

We denote the set of all allowed actions on day t being at
volume f(i) by P((, v{t)),

V{t, v{t)) := {Afl i/'""( < v{t) -Av< ir'''{t + 1),

(9)
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Let us denote the value of a storage contract starting
on day t at volume level v{t) by U{t, S{t), v{t)) and define
the continuation value, C(i, S(i), v{t), Ay), as the value
we attach to the contract after taking an allowed action,
that is, Av &T>{t, v{t)) as defined in Equation (9):

C(i, S{t), v{t), Av) ••= E [e-^Uit + 1, 5(i + 1),

v{t) + Av)] (10)

Now the value U{t, S(i), v{t)) satisfies the following
dynamic program:

U{T+ 1, SÍT+ 1), v{T+ 1)) = q{S{T+ 1), ^ T + 1))

(11)

(12)

^ max

C{t,S{t),v{t),Av)}

for all t. Remember, we assume our contract is settled at
T+ 1.

The dynamic program states that the holder of the
contract weighs different actions against one another on
the basis of their direct payoff plus expected future payoff.
In general, an action with a high direct payoff (selling gas)
has a lower expected future payoff (lower inventory level).
In order to make a decision, the holder needs to consider
the continuation values C(i, S(i), v{t), Av) for all allowed
actions Ai-' G P(í, v{t)).

This dynamic program is actually closely related to
the dynamic program of an American option. If we inter-
pret continuation value as the value of not exercising the
option at day t, assuming it has not been exercised before,
we find the usual dynamic program for the American
option for ( = 1, ..., T— 1 (normally the American option
is settled at the last trading date, t = T):

U{T, S{T)) = h{S{T))

U{t, S{t)) =

(13)

(14)

One way to find an approximate solution for this
dynamic program is by regression-based simulation. From
the available regression-based methods, we use the Least
Squares Monte Carlo (LSM) method. Underlying rea-
sons for this choice and some related literature were dis-
cussed previously.

In the next subsection we discuss our extension of
the LSM method for American options to a storage con-
tract. The resulting pricing algorithm is presented at the
end. We refer to Longstaffand Schwartz [2001] for a simple
numerical example of an American put. Another example
is brought forward by Moreno and Navas |2003], which
emphasizes the possible impact of having too few simula-
tion paths. In their example, the price of the American
option becomes lower than the European option. This
pitfall can be avoided with enough simulation paths, which
requires an efficient pricing algorithm as we will discuss.

Least Squares Monte Carlo

According to the dynamic program defined by Equa-
tions (11) and (12), the holder of the storage contract has
to calculate continuation values for all t for all possible
actions Af G 'D{t, v{t)) for allowed volume levels v{t) e V{t).
The assumption behind regression-based techniques is
that one can approximate continuation values by a (finite)
linear combinatioh of known basis functions (p (i, S{t),
V{t), Av) of the current state. This means we approximate

i, S{t), KO, Ay) - i, Sit), vi (15)

for certain constants /? ^ e R and Q G N. It is a priori
not clear which value to assume for Q and from which
family of basis functions to choose (p (i, S{t), u{t), Av). The
original method works as follows: first, the coefficients in
this expansion are estimated by a least-squares regression
of known continuation values on the current state vari-
ables. Then, a continuation value is approximated by sub-
stituting the regression coefficients and a decision rule
can be determined.

According to our definition, the continuation value
is dependent on time t, spot price S{t), volume level v{t),
and volume change Ay. Before we discuss the LSM
method in more detau, let us show our approach to reduce
the dimensionality of the problem towards a point that the
basis functions need only depend on S(i).

A first observation is that we can reduce the dimen-
sionality from 4 to 3, because the dependency of contin-
uation value is actually on the sum of volume level and
volume change, instead of volume level and volume
change. To see the improvement, suppose we are at
volume level k and consider decision Aî  = 0 so that we
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need to approximate C(i, S(i), k, 0). Now if we are at
volume level k- a and consider decision Ay = a, we have
to calculate C{t, S(i), k— CC, CC). Because these two actions
both reach volume level k at time í + 1, they will lead to
the same cash flows later. That means that

,k,0) = C(í,S(í), k-a,a) (16)

For this reason, we can write continuation values as a
three-dimensional vector: C(í,S(í),y(í) + Av) or, equiva-
lently C(i, S(i), v{t + 1)).

In the LSM method it is possible to include the time
unit in the regressions, but it is more customary and in
line with the original method of Longstaff and Schwartz
to run separate regressions for each time unit. Similar to
the time variable, one has the option to include the volume
level v{t + 1) in the regression together with the price, S(i).
We tested various ways to incorporate both volume and
price in bivariate basis functions, but found that even with
high-order polynomials, convergence results were unsat-
isfactory. In many different types of empirically tested
storage problems, the relationship between volume, price,
and continuation value appeared to be not very smooth.
Hence, it is better to run a separate regression per
volume level. For this reason we discretized the volume
into /Î = 1, ..., N̂ — 1 units of fixed width CC. We esti-
mate separately a different set of regression parameters
for each volume point v{t + 1; n) := (« — \)(X. This leads
to an estimate for the continuation value for all discrete
volume points, denoted by C{t,S{t), v{t + 1; «)).

Thus we have reduced the dimension of the basis to
one. This means the only stochastic part involved is the
spot price and we can write ^{S{t)), similar to Longstaff
and Schwartz. Of course, the precise functional form of
(piSÇt)) remains a discussion and we will come back to this
issue in the next section.

In practice the continuation values are unknown,
and we follow Longstaff and Schwartz in assuming the
following approximation for all M independent paths from
the simulation, b = 1, ..., M:

(17)

where we denote by y''(i + 1, S''(i + 1), u{t - 1; «)) the
accumulated value of future realized cash flows in path b
following optimal decisions starting at time t+1 being at
volume level v{t + 1) and price S''{t + i).^ With approxi-

mation (17), we can estimate the best regression coefficients
y3by an ordinary least squares (OLS) regression. If we sub-
stitute these ß back into Equation (15), we get an approx-
imationC''(i, 5''(i), vit; n)+Av) of the continuation value for
all volume points v{t; n).

Later we will discuss a more efficient approach for
finding an estimate of the continuation value for all allowed
volume levels for all allowed actions. Right now, we will
assume that we discretize both volume and volume actions
into a fine grid, which will enable us to approximate the
continuation value.

With an approximation of the continuation value
for all allowed actions, Af, we can determine a decision
ñ\t, S\t), v{t)), for all allowed volume levels:

max

This means we make the decision that we expect will
have the highest accumulated payoff. Now we are able to
approximate the value of future accumulated cash flows,
Y''{t + 1, S''{t + 1), y(( + 1)):

(19)

This procedure is started at day T + 1 where the
continuation value is zero or equal to a penalty func-
tion, q{S''{T + 1), u{T + 1)), which may depend on (the
lack of) remaining gas in storage, current price level,
and so on.

y''(T +1, S''(T + 1), v{T +1)) = qiS'iT +1), v{T +1))

(20)

Then, stepping backwards, we determine a deci-
sion rule for all points in the time-volume grid. Finally,
at the valuation date, that is t = 0, we set the value of the
storage contract equal to the average value of the future
accumulated cash flows. That is.
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•I M

Û(O,S(O),y(O)) = — (21)

Before we continue, let us summarize our pricing
algorithm:

1. Simulate M independent price paths S''(l), ...,
S''(T + 1) for 6 = 1, ..., M starting at given S(0)

2. Assign a value to the contract at maturity according
to Equation (20)

3. Apply backward induction for í = T, ..., 1. For each
t, step over N allowed volume levels y(i; n) G V(í):

• Run an OLS regression to find an approxima-
tion of the continuation value C''(i, S^t), y(i+l;
«)) according to Approximation (15)

• Combine the different continuation values, C,
into a decision rule, k^t, S''{t), v{t)), according to
Equation (18)

• Implement the decision rule to calculate the accu-
mulated fliture cash flows, Y^t, Sf'{t), v{t)), according
to Equation (19)

4. Storage value is the average accumulated future cash
flow over all price paths according to Equation (21)

Convergence Results in the Literature

A natural question in a simulation setting is whether
the algorithm converges and whether it converges to the
correct value. In this subsection, we provide the conver-
gence results available in the literature for the LSM
method. Because the underlying in our storage contract
is the spot price, the available results on the LSM method
with one underlying are of specific interest. Our conclu-
sion is that the literature indicates that the LSM method
converges, although it is worth checking the results of
using different basis functions and different numbers of
paths in the LSM method. Our own numerical tests will
be illustrated in the next section.

The theoretical convergence of the LSM method for
the American option has been discussed in an asymptotic
sense in three different articles. Longstaff and Schwartz
[2001, Proposition 1] proposed to increase the number of
basis functions until the option price does not increase any
more for a fixed number of paths. This was extended by
Clément, Lamberton, and Protter [2002], who note that

the algorithm converges when both the number of paths
and the number of basis functions go to infinity. The
resulting price distribution will then be Gaussian. Recently,
Stentoft [2004b, Theorum 1] noted that the smoothness of
the payoff also plays a role. More precisely, he claims that,
assuming some smoothness in the payoff function, one must
increase both the number of paths and the number of basis
functions; let there be Q basis functions and M paths, so that
if Q —> oo and Ç^/M —> 0 then the price estimate con-
verges to the true price in a mean-square sense.

From a numerical perspective, testing has been per-
formed for many different options. Besides the Amer-
ican put, Longstaffand Schwartz showed the application
of the LSM method for more complicated payoff struc-
tures like American-Bermuda-Asian options, cancelable
index amortizing swaps (an interest rate product), Amer-
ican options on jump diffusions, swaptions, and a max-
imum option. They reached similar results as for the
American put: for an increasing amount of basis func-
tions the option price converges. They also mention that
the results are robust to the choice of basis functions.

These numerical claims were checked by Moreno
and Navas [2003] and Stentoft [2004a]. Moreno and Navas
use ten different polynomials (power, Legendre, Laguerre,
two types of Hermite, and five of types Chebyshev) to
price an American put. Their results show that Proposi-
tion 1 of Longstaff and Schwartz can be violated in numer-
ical examples, but it typically holds. Stentoft [2004a] finds
a similar numerical counterexample.

Concerning the normality of the resulting price dis-
tribution, Kircher [2004] has a remarkable finding for the
American put option. He found asymmetric fat taus when,
for example, a fifth order polynomial is used. Moreover,
"asymmetric fat tails of the distribution appear only if
more than four terms are included in the regression func-
tion. This effect remains when more paths are included
in the regression" (Kircher [2004], p. 31).

EMPIRICAL RESULTS

In this section we discuss numerical results of the
pricing algorithm, implemented in Matlab. After intro-
ducing our spot price process, we clarify the impact of
market dynamics and operational characteristics on storage
value. At the end, we demonstrate empirically the con-
vergence of the pricing algorithm.
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spot Price Simulation

Because building gas storage facilities requires con-
siderable investment, gas storage is in limited supply and
costly to rent. Consequently, sometimes supply has more
difficulty in matching demand than at other times, exem-
phfied in seasonal patterns and mean reversion in spot
prices. We show the standard process that captures these
dynamics. It will be used for the simulation of daily gas
prices in the rest of this section, and it can easily be
extended to more complex processes.

We simulate M independent price paths according
to the one-factor Schwartz [1997] model with time-
dependent drift where we use antithetic sampling (see,
e.g., Glasserman [2004], Chapter 4.2). A natural exten-
sion would be to consider a two-factor model like
Schwartz and Smith [2000]. Our price process is given by

dSjt)

S{t)
-In S{t)]dt + adW{t) (22)

Note the long term level ;Í(Í) is a time-varying function,
whereas the mean reversion rate, K, and volatility, <7, are

assumed constants. Using X(t) := lnS(i), one rewrites Equa-
tion (22) into

= K\ß{t)-X{t)- — dt + adW{t) (23)

Standard Storage Contract

As an example, we will use a storage contract on a
small salt cavern connected to the Dutch gas system with
characteristics given in Exhibit 1.

For simplicity, we have decided not to take into
account a bid—ask spread or interest rates; that is, we take
a^= a2 = b^ = b2= 5=0 in Equations (3) and (4). For this
example we set the penalty function high enough to ensure
that all exercise strategies will terminate at the desired
end-volume. The valuation has been processed with the
following discretization: a = 2500, N= 101, T= 365.
As a standard ŵ e use the first three power basis functions:
{\,x,x^,x^}.

We simulate M = 500 price paths based on a forward
curve of the Dutch TTF market at June 10, 2005. On that
day, the highest market forward price of 25.44 6/MWh

E X H I B I T 1
Characteristics of the Standard Storage Contract

The volume can also be measured in m^ = 0.01076 MWh.

Nomination

Time to maturity

Start date

End date

Min. volume

Max. volume

Start volume

End volume

Max. withdrawal

Max. injection

daily

r = 1 year

07/01/2005

06/30/2006

v™"(/) = OMWhforalli

v"'^\t) = 250,000 MWh for all t

v(0) = 100,000 MWh

v{T) = 100,000 MWh

/™'"(i, v(0) = max(v"""(O - v(0; - 7,500) MWh/day for all t, v{t)

/"=«(/, v(0)= min (v'"'"'(0 - v(0; 2,500) MWh/day for all t, v(0
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was for February 2006, whereas the lowest price of 14.88
€/MWh was for July 2005. For the simulation, we trans-
formed the available monthly and quarterly contracts to a
daily forward curve based on a fixed weekly pattern cre-
ating a week-weekend spread.

The estimation of the process parameters, G and
K; are not the focus of this article. We initially study two
representative parameter cases, both with a daily mean-
reversion rate of K"= 0.05. The high volatility case has
0" = 9.45%, whereas the low volatility case has O = 3.15%.
Later, we vary these parameters further to better clarify
their impact.

We have previously introduced the concepts of
intrinsic and extrinsic value. The intrinsic value is the
value that can be captured with the current forward curve.
The fuU storage value also incorporates the extrinsic value,
which monetizes the volatility in the gas spot prices. The
intrinsic value of our storage is €2.7 million, primarily

based on a single full cycle over the year (see the middle
line in Exhibit 2) at an average spread of slightly less than
€11. This value is achieved by first injecting in July and
August 2005 at an average price of €15.01 and a total cost
of€2.2 million. Then, until January 12, 2006, the storage
level is kept almost constant at its maximum of 250,000
MWh. It takes until March 8 to fully empty the storage
at an average sales price of €25.83 because on lower priced
weekends extra gas is injected. Total revenue in this period
is €6.5 million. Finally, with some temporary variations,
gas is re-injected to the required level of 100,000 MWh
by the end of June at an average price of €15.73.

The intrinsic value assumes no random variation
in spot prices. With a fairly low daily volatility of 3.15%,
storage value increases by 15% to a total of €3.1 million.
Nevertheless, the storage's flexibility can be really
exploited in the high volatility case of 9.45%, which dou-
bles the storage value, compared to the intrinsic value, to

E X H I B I T 2
Minimum and Maximum Attained Volume

Minimum and maximum attained volume are calculated using both the extrinsic approach (solid) and the intrinsic approach (dashed) for the low
and high volatihty cases from a single run. Note that the intrinsic path and the maximum volume of the extrinsic approach coincide in the left
side of the graphs.

X 10 Low volatility

07/01/06

X 10 High volatility

07/01/06
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E X H I B I T 3
Value Distribution from Extrinsic Approach with Intrinsic Value

Values are for the low and high volatility case from a single run. Vertical lines indicate the intrinsic value (62.7 million), the mean in the low
volatility case (63.1 million) and the mean in the high volatility case (65.4 million).
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€5.4 million. Apparently, the extrinsic value varies greatly
with the spot market volatility. In a volatile market, the
seasonal component is no longer the major price driver
and a flexible storage can benefit from this volatility.

The volume and price distributions from a single
run of 500 simulations are shown in Exhibit 2 and 3.
We see the high volatility case has a wider price distri-
bution, which translates into a higher storage value. The
volume distribution in the high volatility case is a large
band occupying almost all possible volumes. In the low
volatility case, the seasonal spread is the niajor driving
factor for the gas price. We observe therefore that the
realized volumes in the low volatility case follow more
closely the intrinsic volume path. Another issue worth
noting is the weekday—weekend pattern in the volume
paths: the exploitation of lower weekend prices leads to
saw-tooth volume paths. As remarked by De Jong and
Walet [2003], the expected volume distribution can serve
as an input to the transport booking.

Impact of Market Dynamics

The difference between the high and low volatility
cases already hinted at the impact of market dynamics
on storage value. It is interesting to analyze this further.
In Exhibit 4 we show how the value changes with mean
reversion and volatility, the two main drivers of gas spot
prices. As expected, the values increase with volatility;
the relationship is almost linear.

With respect to mean reversion, two effects play a
role in opposite directions. On the one hand, a higher
mean reversion makes price movements more predictable
and the successful timing of purchases and sales easier.
This effect raises storage value. On the other hand, a
higher mean reversion ensures that prices are pulled back
faster to an average level. This limits the possibility of
large price swings and decreases storage value. Exhibit 4
shows that the second effect dominates for small mean-
reversion rates, but the first effect takes over at an inflexion
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E X H I B I T 4
Impact of Changing Mean Reversion (top) and Volatility (bottom) Parameters

The vertical lines indicate the parameter values in the high volatility case.

Dependenceof value on mean reversion (high volatility)

0.01

X 10

0.02 0.03 0.04 0.05 0.06 0.07

Mean-reversion

Dependence of value on volatility
-r

0.08 0.09 0.1 0.11

0.02 0.04 0.06 0.08 0.1

Volatility

0.12 0.14 0.16

point of around K = 0.04. We verified that this inflexion
point lies further to the right for more flexible storages
(with high injection and withdrawal rates), because they
especially exploit small short-lived price swings. In gen-
eral, within a reasonable range for the mean-reversion
rate of around 0.02 to 0.11 our storage value is fairly
stable. We therefore conclude that volatility often has a
larger impact than mean reversion.

Impact of Operational Characteristics

Besides the market dynamics, the operational char-
acteristics can dramatically change the value of storage. In
Exhibit 5, we show a sensitivity analysis of the working
volume, injection, and withdrawal rates, changing one
parameter at a time. The top panel demonstrates max-
imum withdrawal rates ranging from —1,000 to —20,000
MWh/day. The middle panel shows the maximum injec-
tion rates from 500 to 15,000 MWh/day Finally, for the

bottom panel we changed the working volume from
100,000 to 700,000 MWh. The general pattern is that
storage value increases most strongly if flexibility (injec-
tion or withdrawal) is raised from very low levels, but less
so if it is raised from higher levels. When the working
volume is raised we observe a similar flattening off of the
value increase. At some point, somewhere above 600,000
MWh, the full working volume cannot even be cycled in
a year with the available injection and withdrawal rates,
and higher workirig volumes have no effect on storage
value.

We conclude that the magnitude of the marginal
change in storage value depends on the current charac-
teristics of the storage. Changing the factor that is most
binding has the best payoff. In our case, for example,
raising the injection rate with an extra MWh per day has
a far larger marginal effect than raising the withdrawal
rate or working volume with an extra MWh. These mar-
ginal changes should be compared with the additional
investment costs to find the optimal expansion decision.
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E X H I B I T 5
Impact of Changing Operational Parameters in the High-Volatility Case

The top graph shows the impact of changing the withdrawal rate, the middle graph shows the impact of changing the injection rate, and the bottom
graph shows the impact of changing the maximum volume. The vertical lines indicate the parameter value in the standard storage contract.

xlO"

X 10

X 10

Dependence of value on withdrawal rate

-1.6 -1.4 -1.2 -1 -0.8 -0.6

Withdrawal rate [MWh/day]
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-0.4 -0.2
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5000 10000
Injection rate [MWh/day]
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15000

4 5
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Convergence, Normality,
and the Empirical Error

In this and the following subsection, we empirically
test the convergence of the proposed pricing algorithm.
In this subsection we consider the normality of the price
distribution. According to the asymptotic results by Clement
et al. [2001], it should be a normal distribution. According
to Kircher [2004], asymmetric fat tails can occur if we
use more than four basis functions. The normality of the
price distribution is important for the determination of
a confidence interval. We calculate the standard devia-
tion as the standard error of the mean values from ten dif-
ferent runs.

Upon initial inspection, the price distributions in
Exhibit 3 (both from a single run) appear normally dis-
tributed. The Lilliefors test is a statistical test of whether
data is normally distributed with unknown mean and
variance and was used in this instance. We fmd that at a

5% level we cannot reject the hypothesis of normality
for the high volatility case. Increasing the simulation to
1,000 instead of 500 paths, we fmd we cannot reject the
hypothesis for either volatility case.

Impact of Regression Settings

In the regression method, it is not clear a priori
which kind and how many basis functions to choose, and
how many paths to use. In this subsection we present the
results based on choosing from three different families:
power, weighted Laguerre, and b-splines."* The first two
are polynomial families, the last one joins piecewise cubic
polynomial segments. An alternative is to regularize the
fit. This can be done by adding a penalizing term to con-
trol the smoothness of the fit, often the second derivative.
Such an approach was used by Thanawalla [2005] for

SPRING 2008 THE JOURNAL OF DERIVATIVES 9 3



E X H I B I T 6
Test Results for Different Basis Functions

The impact of different families of basis functions (power Pand b-splines
/)), different number of basis functions, and different number of paths
(50, 500 or 5000). For example, P^ indicates the power basis {1, x, .\~,

A"*, .V''}. Regressions for a specific number of paths use the same set of
simulated paths. We present the high volatility case and calculate the
mean and standard deviation on ten runs. Running time indicates the
average running time of the program over the ten runs.

Basis

Pi

Pi

P4

Ps

bs

be

Number of
paths

50

500

5000

50

500

5000

50

500

5000

50

500

5000

50

500

5000

50

500

5000

Mean

5469006

5496365

5502115

5449743

5433701

5436252

5463046

5414859

5412658

5473720

5401761

5397023

5466878

5414515

5413977

5474144

5403416

5398939

Std

67536

22884

5341

68298

24246

3368

70319

24213

4294

69226

22241

4171

71008

24477

4295

69125

21749

4462

Running
time (sec)

1.0

3.8

40.9

1.0

3.8

41.2

1.1

3.8

41.4

1.1

3.9

41.7

3.4

5.7

66.1

7.0

5.9

68.7

swing options. Ramsay (see Endnote 4) offers the possi-
bility of smoothing the fit to become monotonie.

During the implementation we encountered numer-
ical instabilities for the weighted Laguerre. We found poor
fits and even values well below the intrinsic value. For this
reason we do not report the values for the weighted
Laguerre. The implementation also produced numerical
instabilities when increasing the number of basis functions
to seven in both the power and the b-splines regression.

The results of tests for the power and b-splines can
be found in Exhibit 6. The exhibit presents the mean and
standard deviation based on ten runs and the total running
time for different basis functions, different numbers of paths
and different numbers of basis functions. To enable a cor-
rect comparison, the simulations are fixed per number of
paths (e.g., one set of 10 * 500 simulations). We verified
that our b-splines, with no interior knots and the power
basis {1, X, A.~, x*}, yield the same fit. The presented num-
bers are calculated using in-sample valuation as we will
present in the next section.

In Exhibit 6 we see a fast increment in time with
the number of paths while the empirical error is decreasing.
The mean values are surprisingly stable between the power
and b-splines for the different numbers of paths and dif-
ferent number of basis functions (minimum of 5,397,023
and maximum of 5,502,115). From the test we con-
clude the storage valuation is quite robust to the regres-
sion settings.

In comparison to the literature, our results are strik-
ingly good given the number of paths we use. For example,
Longstaff and Schwartz used 100,000 paths to price an
American put. By changing the parameters, we found
this phenomenon was not due to the specific parameter
setting in this example. We have no full explanation for
this behavior, but believe it is partly attributable to the
reduction in dimension described earlier, which makes
the pricing algorithm relatively precise. Another part can
be attributed to the high mean-reversion rate in the gas
market. As a result, the price simulations do not move far
off the initial forward curve. Especially with a one-factor
process, which essentially assumes that only the short end
of the curve is variable, the price distribution is not so
wide. Internal testing has shown that a two-factor price
process requires a higher number of paths, though 5,000
is certainly still enough. Increasing the number of paths
to 50,000 did not really impact the value.
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IMPROVING COMPUTATIONAL EFFICIENCY

The valuation of a storage contract using a Monte
Carlo method is a computationally demanding task. We
have seen calculation time exploding with the number of
paths and the chosen discretization in time or volume,
limiting the number of cases to be studied. Also, in order
to incorporate more physical constraints, an efficient pro-
gram is essential. In this section, we discuss two ways to
improve the performance of the program: use in-sample
valuation and reformulate the pricing algorithm.

In the literature, more ways are available to improve
the speed of convergence, especially in regard to price
simulation. Glasserman [2004] offers an overview of vari-
ance reduction techniques, and Stentoft [2004a] finds that
antithetic sampling does not always outperform the stan-
dard simulation.

In-Sample Valuation

An interesting diagnostic test to study the conver-
gence of the simulation algorithm is to compare in-sample
and out-of-sample valuation. The simulation algorithm
is said to perform well if the two valuations are close to
each other. The pricing algorithm described in the pre-
vious section is an in-sample valuation. The out-of-sample
valuation follows from implementing the decision rules
on a new set of simulated price paths. Thus, the out-of-
sample valuation contains both a backward and forward

induction, while the in-sample valuation contains only a
backward induction. In mathematical terms we have (for
comparison reasons we replicate Equation (21))

(24)

(25)

Longstaff and Schwartz ([2001], Table 2) found, in
the case of the American put, positive and negative dif-
ferences between the in-sample and out-of-sample values,
and that only 5% of the values are larger than two stan-
dard errors. We found no references in the literature for
swing or storage showing both in-sample and out-of-
sample valuations.

In the test we compare the in-sample and out-of-
sample values for five runs in the low volatility and five
runs in the high volatility case. The results are shown in
Exhibit 7. In the exhibit we see both positive and nega-
tive differences with a maximum relative difference of
1.51%. In this test we used the usual first three power
basis functions.

From this test we see that the resulting price distri-
butions from an in-sample and out-of-sample valuation
are similar and have approximately the same mean. Empir-
ical tests showed that an increasing number of simulations

E X H I B I T 7
In-Sample and Out-of-Sample Values

Values are for five runs in the high volatihty case and five runs in the low volatility case and their relative difference.

Run

1

2

3

4

5

High

In

5428806

5459147

5445448

5445076

5387498

Out

5367698

5377910

5382609

5454934

5341233

Rel. diff.

1.14%

1.51%

1.17%

-0.18%

0.87%

Low

In

3162855

3183351

3166992

3171856

3168123

Out

3170827

3164578

3158039

3157683

3160245

Rel. diff.

-0.25%

0.59%

0.28%

0.45%

0.25%
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decreases the difference between an in-sample and out-
of-sample valuation.

The out-of-sample valuation has an extra compu-
tational demand on top of the in-sample valuation in
terms of memory usage and calculation time. For the out-
of-sample valuation, during backward induction we have
to store a decision rule for all volume grid points and all
time periods. This means we store a three-dimensional
matrix of regression parameters and use it during forward
induction to obtain the out-of-sample value with a new
set of price simulations. For the in-sample valuation, it suf-
fices to store the regression parameters for a specific grid
point until the valuation for that grid point has been done,
after which we can forget it.̂

It is worth noticing that we can avoid three-
dimensional matrices entirely if we run an in-sample val-
uation. It is enough to note that the pricing algorithm
requires the accumulated future cash flows and not all
individual cash flows. Therefore, it is sufficient to dis-
count during the backward induction, leaving out the
time dimension.

Thus we can observe that the use of three-dimen-
sional matrices is directly connected to a discussion about
out-of-sample versus in-sample valuation. We conclude
that in-sample valuation saves calculation time and the
regression parameters and the intermediate cash-flows do
not need to be stored. The only negative aspect of in-
sample valuation is that we are no longer able to get insight
into the possible volume paths. For valuation purposes
the possible volume paths are often not relevant, though
for managing physical storages they might be important.
In those cases we advise running an in-sample valuation
(based upon a large number of paths) for valuation pur-
poses with an out-of-sample valuation (based upon a small
number of paths) to create a rough volume distribution.
All numbers presented in this article are based upon in-
sample valuation.

Reformulate Pricing Algorithm

We have argued that it is more efficient to run sep-
arate regressions per time unit and volume point than
include time and volume in the basis functions of the
regressions. We also showed that continuation value
depends on the sum of current volume and volume change,
rather than on either alone. All this leads to basis func-
tions that depend only on S(i).

Discretization of both the volume level and the pos-
sible actions was one way to reduce the dimensionahty.
But in order to incorporate all volume levels that can pos-
sibly be attained, a very fine grid of volume points may
be required. We perform an interpolation as a solution to
limit the size of the grid and at the same time obtain accu-
rate estimates of continuation values. More precisely, the
expected continuation values for intermediate volume
levels are calculated as the distance weighted average of
the expected continuation values at adjacent volume
points, denoted by v{t + 1; n*) and f(f + 1; w' + 1). In
mathematical terms we can write.

n*:=sup{n

w '•—

a

(26)

(27)

; //* +1)) (28)

This interpolation is especially time saving when
the working volume is not a nice multiple of injection and
withdrawal rates, which is quite likely in practice. It is
even almost inevitable when injection and withdrawal
rates are time dependent and/or volume dependent.

The remaining step in the process is to consider how
to treat the different possible actions. According to the
definition of the decision rule in Equation (18), we should
choose the maximum over Av e !?((, v{t)). One wonders
if the optimal decision is to always choose among max-
imum possible injection, maximum possible withdrawal,
or no action. From a computational perspective it is cer-
tainly beneficial to' be able to consider only three actions
and leave out all intermediate possibilities. Such an
approach was chosen by De Jong and Walet [2003]. In our
experiments we have seen this is most often, but not always,
the case. As an example of how this strategy is subop-
timal, consider a storage where the working volume is
not a multiple of the maximum injection and withdrawal
rate. In this case the optimization will miss the opportu-
nity to inject less than the maximum even though the
volume is not close to the maximum.
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CONCLUSION

We have shown in this article how to value storage
contracts using a Monte Carlo method. Our proposed
solution method is a generalization of the Least Squares
Monte Carlo method proposed hy other authors for
American options. In gas storage valuation and opti-
mization, the current volume level plays a central role.
The level of this continuous variahle determines which
actions are allowed and makes the prohlem more complex
than standard American puts or standard swing options.
We propose a pricing algorithm which incorporates a
number of solutions to efficiently deal with this volume
variable and the various constraints.

We show empirically that this pricing algorithm con-
verges well compared to in-sample and out-of-sample val-
uations, but also by using different basis functions and a
different number of paths. We observe that as few as 50
simulations often suffice to get a precise storage value. This
is in stark contrast to other research where up to 100,000
simulations are mentioned as a requirement for low vari-
ance in the option value. We have no full explanation for
this behavior. We partially attribute this remarkable result
to the strong mean reversion in gas spot markets, which
limits the variance of the price distribution. However, we
also attribute this to our effective pricing algorithm and the
one-factor price model.

Our method assumes a spot trading strategy and a
one-factor price process. It is therefore most suitable for
valuations with a horizon of only a few years. From a finan-
cial perspective, it would be especially valuable to adapt the
methodology for long-term valuations. This can be achieved
with the same valuation method, but a different price sim-
ulation. The new simulations would have to come from a
multifactor price model which also describes uncertainty
in long-term price level, summer—winter spreads, and
interest rates. Such a model would further support the deci-
sion-making process in new gas storage investments, in
which many billions of dollars will be invested over the
next couple of years.
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this article does not necessarily reflect the views of Essent
Energy Trading.

'The walls of a physical storage are flexible. When pres-
sure becomes low, these walls will move, and rock deformation
occurs. See, for example, DeVries [2003] for a descriptive model
of this process. Such models provide guidelines for the actual
operation of the gas storage. In particular, they may indicate that
the inventory level (pressure) has to stay above a minimum
average level most of the dme, and may never fall below another
minimum level. This creates additional optimization and val-
uation problems.

Ît is good to realize that the terms exercise, stopping time,
and strike, which are common in the literature for American
and swing options, are not easily transferred to storage con-
tracts. The holder of the storage contract can take actions and
does not actually stop anything. Therefore, a decision rule is a
more appropriate concept than a stopping time. As well, the
holder compares the expected payoff of an action to the expected
payoffs of the other allowed actions, and not to a fixed strike
like the holder of an American or swing option. Continuation
values are thus an appropriate concept.

T̂o improve the convergence speed, Longstaff and Schwartz
[2001] propose using only in-the-money paths in the regression.
This recommendation cannot be applied here, because a storage
will naturally generate negative payoffs during injection.

••The b-spline regression is performed with software pro-
vided by Jim Ramsay on his website: ftp://ego.psych.mcgill.
ca/pub/ramsay/. We use the functions "create_bspline_basis"
and "data2fd" with order— 4 and nbasis = [4,5,6]. This implies
we have 0, 1, and 2 internal knots.

^Another way to reduce the size of the decision matrix is
to store only the switch points. With b possible actions in a point,
while assuming economic explainable results, it would suffce to
store only b numbers for each time-volume combination.
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