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When Supply Meets Demand: The Case
of Hourly Spot Electricity Prices

Alexander Boogert, Student Member, IEEE, and Dominique Dupont

Abstract—We use a supply-demand framework to model the
hourly day-ahead price of electricity (the spot price) based on
publicly available information. With the model we can forecast
the level and probability of a spike in the spot price defined as the
spot price above a certain threshold. Several European countries
have recently started publishing day-ahead forecasts of the avail-
able supply. This paper shows this forecasted capacity is quite
successful in predicting spot price movements 24 h ahead.

Index Terms—Available capacity, day-ahead electricity market,
price forecasting.

I. INTRODUCTION

DAY-AHEAD electricity prices (known as spot prices)
serve as an important reference to all members of the

electricity industry. These prices are characterized by high
volatility and rare but violent spikes. These aspects have mo-
tivated numerous research efforts. In this paper we investigate
the spot price of electricity in a supply-demand framework.

Spot electricity price models can be used for short- and long-
term goals. For short-term tactical planning, a good forecast of
the absolute height of the day-ahead prices and the probability of
a spike is essential. For long-term strategic planning, an estimate
of the volatility of the spot price can be used to assess the value
of power plants. In this paper however we focus mainly on the
short-term goals.

Our objective is to establish a relation between several fun-
damental drivers and hourly spot electricity prices. In particular
we will investigate the role of available capacity. Using hourly
prices instead of daily prices has two main advantages. First, it
makes it possible to explain the different patterns of prices over
the day. Secondly, it increases the sample size and hence the
likelihood of obtaining robust empirical results. Accurate fore-
casts of demand and supply are of paramount importance to the
electricity industry because these two must be balanced at all
times to maintain the stability of the power grid.

Forward electricity contracts are traded several years before
actual delivery. Contracts are traded both on OTC markets
and on organized exchanges. Delivery is typically channelled
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through day-ahead and real-time markets, whose designs can
differ substantially across geographical areas. Examples of
design differences include the exact time of settlement, the
granularity of the contracts (i.e., the time period over which
power is to be delivered), the handling of actual delivery in
real time, and the exact information provided to the public. In
most cases, the day-ahead market is an auction: an independent
auctioneer aggregates buy and sell orders and computes 24
hourly market-clearing prices for the following day. These are
the day-ahead prices we discuss in this paper.

Most day-ahead markets operate at an hourly granularity,
while the U.K. and Australia operate at an half-hourly gran-
ularity. The amount of publicly available information differs
across markets. For example, a day-ahead estimate of the avail-
able supply is at the moment published for several markets, but
it is not yet available everywhere. In this paper we consider
the Dutch market where such information is available. The
variety of market setups makes it necessary to adapt models to
the local conditions to make them useful. However, these local
adjustments generally do not affect the cores of the models.

This paper is organized as follows. In Section II we review
the literature. In Section III we establish the supply-demand
framework for a general electricity market. First we discuss
factors which influence spot electricity prices. Then, we intro-
duce an indicator combining supply and demand and use this
indicator to forecast hourly spot prices one day ahead. Subse-
quently, we contrast our non-parametric approach with some
parametric ones. In Section IV we introduce the situation in the
Dutch market. We specify which data are available and apply
the different techniques to forecasting an hourly spot price and
the probability of a spike. Section IV ends with a study on the
stability of the relationship. In Section V we discuss the impli-
cations of our findings for further modeling.

II. REVIEW OF THE LITERATURE

For a long time, the modeling of electricity spot prices has
focused on reduced-form models (e.g., [1], [2]). There are
two popular modeling approaches: jump diffusion and regime
switching. Both types of models are mathematically tractable
and have received considerable attention. However, the esti-
mation of those models tends to be delicate. Another route is
provided by fundamental models (e.g., [3]), which carefully
describe the characteristics of the supply stack in a market. In
the case of a central planner the full supply stack is known and
used to serve the load at the lowest cost, while in liberalized
markets only the general shape of the daily supply stack is
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known. Marginal cost curves obtained with fundamental mod-
eling and estimates of the supply stack need to be transformed
into spot prices.

Hybrid models incorporate ideas from both approaches.
While reduced-form models use only past prices, hybrid models
incorporate additional information, such as load, weather, or
power plant availability. Examples of a class of hybrid models
based on the assumption that there is an exponential relation
between price and load are [4]–[9].

The exponential function captures the empirically observed
pattern of strongly increasing prices for high loads and leads in
some cases to the closed-form valuation of electricity deriva-
tives. Derivative pricing is based on continuous-time models,
while forecasting is mainly based on discrete-time models, e.g.,
in our approach. Both types of models can be hybrid. We will
discuss the connection to continuous-time models in more de-
tail in Section III-F. The approach we develop can be used in
both discrete- and continuous-time models.

The main driver in our model is the reserve margin, i.e., the
fraction of total supply available to cover demand. In practice,
there are several definitions possible of the available capacity,
which we will discuss in more detail in Section III-A. Besides
spot electricity price modeling, the reserve margin is studied in
research on public policy (e.g., [10]) and security of supply (e.g.,
[11]). In spot electricity modeling, reserve margin is studied in
[12]–[16]. Anderson [13] and Burger et al. [14] choose a func-
tional form to study the relations between reserve margin on
one side and probability of spikes (Anderson) or the level of
the spot price (Burger et al.) on the other. The index used by
Burger et al. incorporates the expected relative availability of
power plants and load, although the precise form is not given.
Mount et al. [15] create a regime switching model where the
switching probabilities between the regimes and the conditional
mean of the power price in each regime vary with time and with
the reserve margin. Zareipour et al. [16] discuss how different
variables and models can improve the forecast of the day-ahead
prices. They find a variant of the reserve margin is a useful in-
dicator in the Ontario market.

III. SUPPLY-DEMAND FRAMEWORK

In this section we discuss factors which influence spot elec-
tricity prices. Many factors besides past electricity prices may
play a role. We start by investigating available capacity and how
to forecast this factor. We then turn to additional price drivers.

A. Forecasting Available Capacity

In most electricity markets accurate information is available
on the quantity and the price of power traded on the market in the
past. By construction, supply equaled demand at those prices.
More information about the state of the market can be obtained
from the supply and demand curves. In some electricity markets
there is a clear relation between the price and the trading volume
on the day-ahead market because all supply has to be offered in
the day-ahead market (e.g., in the old NETA system in England
and Wales or currently in Spain). In these markets the supply
and demand curves can be used to characterize the state of the

market. However, in some markets, including the Netherlands,
only part of the supply is offered on the day-ahead market and
subsequently no apparent relation between price and volume is
observed.

The system load is an alternative to the trading volume on
the day-ahead market. The system load stands for the demand
for power within some area. The relation between system load
and market price is known to be stronger, which is confirmed in
our sample (see middle panel of Fig. 3). The bidding curve on
the day-ahead market gives the demand (and supply) curves as
a function of price. This makes it easy to determine the demand
elasticity, but it only presents the demand within the day-ahead
market. The derivation of the demand elasticity from a single
number like the system load is more difficult.

Another reason for the absence of data comes from a delay
in data release. For example, in the PJM market the supply and
demand curves are released with a delay of 6 months. Besides,
Mount et al. [15] note that the available capacity could not be
fully recovered from the public data on offered capacity and an
assumption on the total available capacity was necessary.

In markets where the information from the day-ahead market
cannot be used, the elasticity of supply and demand has to be
determined by other means. One measure of the supply elas-
ticity is the spare capacity available. This capacity crucially de-
pends on the granularity of the market. In the very short run (e.g.,
within 15 min) only some flexible units can be turned on and the
output of running units can only be marginally increased. On a
day-ahead basis more of the capacity will be available.

Demand elasticity is normally not taken into account as con-
sumers are generally price insensitive. However, it may be pos-
sible to temporarily reduce the power supply to some selected
consumers, e.g., large industrial customers in the metal industry,
who accept to run this risk (within contractual limits) in ex-
change for a discount in the power price. In financial terms, these
customers buy an interruptable contract. In general, no public
information is available on this type of contracts.1 These de-
mand elasticity effects are explicitly taken into account in Fezzi
and Bunn [17] as a latent variable. In this paper we exclude this
effect.

Within the existing literature most articles do not explicitly in-
troduce supply because of a lack of data. Recently, the situation
has improved as indicators have been introduced in several Euro-
pean electricity markets. Regulators are currently providing es-
timates for the available capacity in the Netherlands, U.K. and
Germany. In this paper we will focus on the Dutch market, which
has the longest history of the three for this type of indicator.

Another grey area in the definition of available capacity is
the use of import and export capacity. The question is how
to include potential import and export into the total available
generation capacity. An important difference is created by the
timing of the import/export capacity market relative to that of
the day-ahead market. If the capacity market clears before the
day-ahead market, the resulting price can serve as a leading in-
dicator of the day-ahead price in the domestic market relative to
the foreign market.

1We thank the referee for pointing out that Statnett does publish information
in Norway.
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B. Additional Price Drivers

Natural price drivers are factors which impact supply or de-
mand or both. Besides there can be feedback effects from prices
in either the previous spot price or the most recent real-time
prices. To give an indication about the variety of potential price
drivers, we refer to [18]. They mention power supply factors
(installed capacity, outages, generation resource mix, transmis-
sion constraints), demand factors (load duration, weather sensi-
tivity, economic activity, retail price) and market design (retail
price caps, revenue share of spot sales, capacity requirements
and wholesale price caps) as possible price drivers.

C. Relation Between Supply, Demand, and Spot Price

One of the goals of this paper is to understand the relation be-
tween supply, demand and the spot price. We focus on a simple
economically motivated relation which allows us to study the
underlying data carefully. Alternatively, one could apply data
mining techniques like neural networks and adaptive splines
(e.g., [19]). Following Anderson [13] we have decided to con-
sider a demand-supply ratio of the following kind:

demand
available capacity

(1)

This ratio represents the fraction of the supply available to
cover demand. This means it is a reserve margin index. Eco-
nomic intuition suggests this index should be negatively corre-
lated with the spot price. The lower the index, the less capacity
is available and the tighter the market becomes: more expensive
units come online, and marginal costs increase. This index is
closely related to the concept of capacity utilization used in An-
derson [13]. Capacity utilization states how much of the avail-
able capacity is used to cover the demand.

Instead of a demand-supply ratio, one could opt for a
supply-demand ratio (available capacity/demand - 1) or
an absolute difference between the supply and demand
( available capacity - demand). We prefer a ratio as it is dimen-
sionless. We believe this improves the stability of the relation.
We choose the demand-supply ratio because we face mainly
measurement errors in supply, which play a lesser role in the
demand-supply ratio than in the supply-demand ratio (see [10]
for a rigorous support of this claim) or the absolute difference
between supply and demand. Moreover, market participants
also seem to prefer this ratio.

D. Forecasting Hourly Spot Prices

One way to forecast the spot price is to consider the average re-
lationbetweenthereservemarginandhourlyspotprices.Thisalso
allows us to establish a confidence interval around the forecast.
From an economic viewpoint we expect this relation to increase
for decreasing reserve margins. Moreover, we expect the band-
width to increase for decreasing reserve margin. In the paper, we
use both a piecewise linear fit and a smoothed -spline fit.

This bandwidth represents an interval forecast of the price,
which appears to receive attention since only recently. For ex-
ample, Misiorek et al. [20, p. 23] note that “interval forecasts
have not been investigated to date.” The natural extension of

our relation is to consider a two-dimensional version of this ap-
proach. Such a step was taken in Lu et al. [19] where besides a
reserve margin a steepness-of-load indicator is used.

E. Forecasting the Probability of a Spike

The probability that the prices cross a certain threshold is
an important variable for market participants besides the abso-
lute height of the spot price. A spot price above the threshold is
called a spike. In this paper we define the threshold as a fixed
amount of Euros. An alternative would be to define the threshold
in terms of the cost of the marginal unit for the specific hour
under consideration. We estimate the probability as the relative
number of observations above the threshold in our data sample.

F. Parametric Approach

In our approach we assume there is a nonlinear relation be-
tween the reserve margin and spot prices. Another approach is
to parametrize the relation. We can rewrite our reserve margin
index as follows:

(2)

where is the spot price for hour , is the demand, is the
available capacity and is a nonlinear function.

The variable takes values between 0 and 1, and
can take very high values. If one assumes a monotonic rela-

tion between reserve margin and price, it is reasonable to base
on the inverse of a cumulative distribution function (cdf) with in-
finite support and given in closed form, for example, the logistic
distribution. This could motivate the function used in Anderson
[13] (the function there is given without explicit motivation).
Similarly, Barlow [21] makes the power price a function of a la-
tent variable that follows a diffusion process (this variable need
not be between 0 and 1). The function is built to contain a singu-
larity, which pushes the price towards infinity in the neighbor-
hood of the singularity. The inverse cdf technique can be seen
as refinement of this technique.

Alternatively, one can treat supply and demand as separate
stochastic processes, and introduce a functional form for the
relation of the form . Using this functional
form and an explicit link between day-ahead and forward
prices, creates a possibility to study the forward risk premium.
Bessembinder and Lemmon [22] formulated a general equi-
librium model for the day-ahead forward prices, which they
applied to the PJM market in the United States. Villaplana [23]
extended the model by considering supply as a random variable
and applied the model to the Nordpool market in Scandinavia.
In these models the relation is assumed to be of exponential or
power form, which simplifies the estimation of the parameters
and yields a closed form solution for forward prices.

Simultaneously, it captures the observed feature that prices
rise for increasing demand and decreasing capacity. For ex-
ample, Villaplana [23] estimates

(3)

where , and are constants.
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A related version of our approach was independently created
by Kanamura and Ohashi [24]. Besides a Box-Cox transforma-
tion, they parametrize the relation between price and load by two
linear functions and one quadratic function. This comes close to
our piecewise linear fit.

IV. APPLICATION TO THE DUTCH MARKET

We first discuss the structure of the Dutch market and the
availability of data. Secondly, we describe how this data behaves
and show how to make a forecast for the spot price and the
probability of a spike. Finally, we discuss the stability of our
relation.

A. Overview of the Dutch Market

The Netherlands was among the first countries in the Euro-
pean Union to liberalize its electricity market. The Dutch Inde-
pendent System Operator, TenneT, manages the high-voltage
grid (380 and 220 kV), which interconnects regional electricity
networks and links the Dutch grid to Belgium and Germany.
TenneT, a fully state-owned company, ensures access to the
domestic high-voltage network and organizes, through its
subsidiaries, the day-ahead market for electricity (Amsterdam
Power Exchange or APX) and the imbalance market. It also
auctions capacity at the five cross-border interconnectors. The
maximum import under normal circumstances is 3650 MW,
which can be increased to 3850 MW in case of emergency. The
scheduled day-ahead import is not exactly realized in real-time.
Although the electricity traded on the APX represents about
20% of the Dutch daily consumption, the APX price is consid-
ered an important benchmark.

In the Dutch market, the import/export capacity is auctioned
before the day-ahead spot electricity while imported electricity
has to be offered on the day-ahead market. The Netherlands typ-
ically imports power, often up to the full available import ca-
pacity. A new development [25] is the introduction of market
coupling between the Netherlands, Belgium and France. Under
this new system the import/export auction is integrated into the
day-ahead auction and the auction is changed from explicit (be-
fore the day-ahead electricity market) to implicit (simultane-
ously with the day-ahead electricity market). We believe our
method will remain valid. The new system does not change the
load, maximum import or available capacity within the Nether-
lands, which as discussed below, are the explanatory variables
in our approach. However, it might have an impact on the real-
ized spot prices. Whether these have changed significantly lies
outside the scope of this paper.

B. Available Data in the Netherlands

Before 2004, estimates of the available capacity were made
public only if they had dropped below a certain threshold. As
this rarely happened, it was difficult to estimate the available ca-
pacity and the demand-supply equilibrium in general. Boogert
and Dupont [26] show that in that period the water tempera-
ture was a good indicator of the spike risk in the electricity
price: when water temperatures cross a certain threshold, envi-
ronmental regulations restrict the production, while demand in-
creases due to cooling needs, which together lead to high prices.

Since 2004, TenneT publishes an estimate of the available ca-
pacity in the Dutch grid for the coming 30 days. TenneT gathers
statements of the different generators about the availability of
their individual plants and combines them in an aggregate index.
The TenneT estimate covers the generation in the Netherlands
except for wind-based production and smaller units (of less than
10 MW). The TenneT estimate is one way to describe the supply
in the Dutch market. Besides this estimate, we think the fol-
lowing variables could help forecast the day-ahead electricity
price:

• National load: realized generation including realized net
import gives the load which is published by TenneT on a
15-min basis with a delay of two days. The official load
data covers only electricity generated by units larger than
10 MW. Moreover, no official forecast is available.

• Realized import or export: history published by TenneT
on a 15-min basis. We take import as a positive number
since it adds to the available capacity. This information is
published with a delay of 30 min.

• Maximum import: the maximum possible import and ex-
port is published by TenneT. A day-ahead forecast is avail-
able, together with announcements for future maintenance
and enlargement in case of emergency. We received histor-
ical data from TenneT.

• Wind power: there is no official estimate of the total wind
power production in the Netherlands. An internal estimate
was provided by Essent Energy Trading.

This paper uses data starting 01/10/2004 and ending 17/06/
2006.2 The starting date coincides with the first publication of
the available capacity forecast. As spot prices are published on
an hourly scale, we transformed all 15-min data into hourly data
by taking the average over the specific hour. Subsequent graphs
all show hourly data. In total there are 14 904 hourly data points.

As mentioned in Section III-A, there are several ways to de-
fine available capacity. In the Dutch market, we need to make
two choices. The first one deals with whether we should include
realized imports (or exports) or the day-ahead forecast of max-
imum imports (or exports). The second one deals with whether
we should include wind power capacity.

The potential for wind energy is growing in the Netherlands.
Given its size, it could be interesting to include wind power into
the total available capacity. However, as the production data are
not public, we exclude wind power from the available capacity.
Concerning the import/export number, we use the day-ahead
forecast of maximum possible import/export. Thus, to create an
estimate of the total available capacity , we sum the TenneT
estimate and the maximum import.

C. Reserve Margins in the Netherlands

We start by showing the development of the underlying data
for the reserve margin over time. Fig. 1 shows the load, fore-
casted available capacity and day-ahead maximum possible im-
port capacity. For contrast we also include the realized values
of the import in the bottom panel. In Fig. 1, load (the upper
panel) varies between 7000 and 16 000 MWh while forecasted
available capacity (the middle panel) varies between 12 000 and

2For convenience we deleted the four days with daylight saving hours in our
sample: 31/10/2004, 27/03/2005, 30/10/2005, and 26/03/2006.
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Fig. 1. National load (top), available capacity (middle), maximum im-
port capacity (lower, bold line), and realized net import (lower, thin line),
01.10.2004–17.06.2006.

Fig. 2. APX price (top) and reserve margin in the Netherlands (bottom), 01.10.
2004-17.06.2006.

17 000 MW. Realized import is significantly more volatile than
maximum import (the lower panel). This is due to the uncer-
tainty in the actual demand.

Fig. 2 shows the development of both the APX price and the
reserve margin over time. A scatter plot in the upper panel of
Fig. 3 reveals a pattern of increasing prices with reserve margin.
For completeness, the figure also graphs the APX against the
national load (the middle panel) and against the available ca-
pacity (the lower panel). High prices are sometimes observed
with medium index values. We discuss the stability of our rela-
tion in Section IV-F.

D. Forecasting the Spot Price

One way to use the reserve margin to forecast the spot price
is to consider the average relation from reserve margin to APX
prices. In Fig. 4 we show a piecewise linear fit and a -spline
fit. The piecewise linear fit was created by placing the reserve

Fig. 3. Scatter plots of APX price versus respectively national load (top), avail-
able capacity (middle), and reserve margin (bottom).

Fig. 4. Top left diagram shows the relation of APX price and reserve margin
by means of both smoothed �-splines and a piecewise linear function. Top right
diagram shows the relation by means a piecewise linear fit with a small width.
Lower diagrams show the number of underlying observations in each interval
for width 0.05 (left) and width 0.005 (right).

margins into several segments. We create intervals of width 0.05
and take the average of all spot prices within each interval. Re-
serve margin takes values between 0.10 and 0.70, leading to 12
intervals (0.10–0.15, 0.15–0.20, etc.). We denote an interval by
its ending point (so the first interval is 0.15). To show the im-
pact of the width of the interval we included a piecewise linear
fit with an interval of width 0.005 in the upper right panel.

From the figure it is clear that odd humps can occur in the
piecewise linear fit. A width of 0.05 leads to a monotonic de-
creasing fit for the existing data set. In contrast, a fit based on a
width of 0.005 contains several wiggles. These wiggles contra-
dict the economic intuition that prices should increase as reserve
margins decrease.

Producing fitted prices that are monotonously decreasing in
reserve margins was achieved by either adjusting the width in
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Fig. 5. Five percentiles of the relation between the APX price and the reserve
margin (10, 30, 50, 70, and 90 percentile).

the averaging window or by using a non-parametric technique
where monotony is built in. In Fig. 4 we show a -spline (order
6, 15 evenly spaced knots) fit.3 We subsequently smoothed the
fit, which in our case gave a smooth and monotonic fit.

Two interesting points arise from this figure. In this example
the piecewise linear fit and the -spline fit are very similar. In ad-
dition, we see that the smooth -spline fit appears rather linear
for the reserve margin where most observations occur: values
between 0.20 and 0.60. A similar observation was made by Vi-
sudhiphan and Ilic [10] on the NEPOOL market.

Our next question is how spread the real spot prices are
around the average relation. In Fig. 5 we show the dispersion
around the fit by plotting five different percentiles (10, 30, 50,
70, 90) of the relation between the APX and the reserve margin.
From the figure we can conclude the price spread is decreasing
with the reserve margin. Again we see a hump around index
0.30.

To gain additional insights, we compute the summary statis-
tics for each of the discussed intervals and display the results in
Table I. In this table we see that standard deviation, skewness
and kurtosis rise for decreasing reserve margin if we disregard
the first and the last interval. This is reasonable considering the
limited number of data points in these intervals.

E. Forecasting the Probability of a Spike

We define a spike as a price above 90 Euros, which is in line
with market practice. We will take the threshold as given, and
will not include it as one of the parameters to be estimated. A
threshold of 90 Euros implies that about 11% of the data qualify
as spikes. In Table II we give the percentage of the complete data
sample that would qualify as a spike for some other threshold
choices.

3The �-spline regression is performed with software provided by J. Ramsay
on his website: ftp://ego.psych.mcgill.ca/pub/ramsay/ which includes �-spline,
smooth �-spline and smooth, monotonic �-spline. We used the fourth derivative,
and set � � ����.

TABLE I
SUMMARY STATISTICS OF APX SPIKES FOR DIFFERENT RESERVE

MARGIN INTERVALS: NUMBER OF OBSERVATIONS, MEAN,
STANDARD DEVIATION, SKEWNESS, AND KURTOSIS

TABLE II
EXCEEDING PROBABILITIES FOR DIFFERENT THRESHOLD LEVELS.

IN THE FULL SAMPLE, THERE ARE 14 904 POINTS

Fig. 6. Probability of a spike versus reserve margin within our data sample
(solid line). The dashed line is proposed by Anderson [13] for the PJM market.

In Fig. 6 we show the relation between the probability of a
spike and the reserve margin. For the probability of a spike we
take the relative number of observations in a specific reserve
margin interval above 90 Euros. Varying the threshold yielded
similar graphs. The data do not seem to be in line with economic
intuition: the probability is sometimes increasing in the reserve
margin.

For comparison we include the spike probability function pro-
posed by Anderson [13]. Our data already spike for higher re-
serve margins and the cut-off point is less clear than in the PJM
data. As shown by Birnbaum et al. [11] and Mount et al. [15] for
the PJM market and Ilic and Visudhiphan [10] for the NEPOOL
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market, the probability of spike rises fast for reserve margins
below 20%.

F. Stability

The non-monotony of the relation between reserve margin
and wholesale electricity price leads us to investigate the sta-
bility of the relation. In particular, we consider the time de-
pendence on the daily and the yearly level, one-off events and
out-of-sample performance.

1) Causes of Instability: The relation between reserve
margin and spot prices combines the information from all the
hours of the day irrespective whether it is day or night, week or
weekend. Since we consider each hour individually, we cannot
take the relation between adjacent hours explicitly into account.
This information is especially relevant in situations where load
is quickly changing or reaches its peak, as start-up costs start
to play a role at those moments too. Because the start-up costs
for the power plant to cover the maximum load need to be
earned back, prices become temporarily higher than the levels
we would normally establish. Also peak-load plants have a low
number of running hours during which both the capital and
operating costs need to be earned back.

Start-up costs also play a role in the weekends. In practice, an
operator normally makes a decision whether to run or not to run
a unit during the whole weekend. If an operator decides to run,
he might be willing to sell under marginal costs (and hence at a
loss) in order to avoid start-up costs. Because load can fluctuate
a lot during the weekend, and with the load our reserve margin
index, we can see different prices than what we expect from the
normal price—reserve margin relation.

A similar must-run situation can occur in the winter with
power plants that produce both heat and power. In order to cover
the heat demand, the power plants become must-run in elec-
tricity. With the effect of must-run units known, one can make
the hypothesis that hours which are covered with must-run units
have a lower price.4 To test this hypothesis, we need to be able to
make the distinction between flexible and inflexible (must-run)
units in the forecast of available supply. So far, this type of split
is not available in the Dutch market. Therefore, we will test the
implication of our hypothesis that, for the same level of reserve
margins, wholesale power prices are lower in the weekends.

2) Dependence on Time of Day: In this and the next sub-
section we check whether the relation is similar across different
subsets of the data. Trading of electricity normally takes place in
fixed subsets of the day. Note that the definitions of such subsets
(such as the exact hours to be called peak hours) differ across
markets. Table III gives the definitions in the Dutch market and
the number of observations in the data sample falling in each
subset. A day (or baseload) can be split into a peak and an
off-peak period. Peak hours can be split into a weekend-peak, a
shoulder and a super-peak period.

In Fig. 7 we see that peak and off-peak prices are in line,
though off-peak prices fall below peak prices for a reserve
margin between 0.40 and 0.50. This is in line with our hypoth-
esis. In Fig. 8 we consider the average relation for the three
subsets of the peak: weekend peak, shoulder and super-peak.

4In the Netherlands negative prices can only occur in the real-time market.
The minimum possible price at the day-ahead market is 0.01 Euro.

TABLE III
DEFINITIONS OF DIFFERENT TIME-OF-DAY SUBSETS

IN THE DUTCH MARKET AND THE NUMBER OF OBSERVATIONS

Fig. 7. Average relation during peak and off-peak (top) together with the
number of observations (bottom) in each interval. Values based on less than ten
observations are omitted.

Fig. 8. Average relation during weekend peak (solid), shoulder (dashed), and
super-peak (dotted) in the top panel together with the number of underlying
observations in each interval in the bottom panel. Values based on less than ten
observations are omitted.

In the figure, we see that, keeping reserve margin constant, the
power price tends to be lower during shoulder hours than super-
peak or weekend-peak hours. In addition, the weekend-peak
prices rise above super-peak prices for a reserve margin below
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Fig. 9. Average relation during peak (dashed) and off-peak (solid) for summer
(top) and winter (bottom).

Fig. 10. Average relation during weekend peak (solid), shoulder (dashed), and
super-peak (dotted) for Summer (top) and Winter (bottom).

0.30. This appears out of line with our hypothesis. In the next
section we investigate seasonal effects.

3) Dependence on Season: We divided the data into Summer
(April–September) and Winter months (October–March). In our
data set of 14 904 data points, we have 8640 data points in the
Winter and 6264 in the Summer. In Fig. 9 we see that the differ-
ence between peak and off-peak is sustained if we split the data
into Summer and Winter. The same conclusion holds for the re-
lation between weekend-peak, shoulder and super-peak hours
as can be seen in Fig. 10. This brings us to the conclusion it is
better to specify two separate models: one for week and one for
weekend days.

4) Outliers: In the previous section, we have seen that cer-
tain data points were not in line with the average relation. For
this reason we consider how these “outlier” data are distributed
over the data sample. We decided to look at data points with
high APX prices and relatively high values of reserve margin.

Fig. 11. Top panel shows how many hours on a specific day had both a high
APX price (�200) and high reserve margin (�0.3). The bottom panel shows
APX prices, 01.10.2004-17.06.2006.

For example, if we use the (arbitrary) definition of an outlier
as and reserve margin 0.3, we call 16 data
points outliers while in total 128 data points had .
In Fig. 11 we graph how many of such data points were clus-
tered in one day over time. We see there are two days with three
outliers (that is: on two days there were three hours which are
rather out of line with the usual behavior), and that outliers are
mainly present around October 2005. An explanation for these
outliers could be the low nuclear availability in France during
that time, which impacted the different surrounding electricity
markets. For comparison, we included again the development of
APX prices over time. We conclude that the hump was not due
to odd data in the beginning of the data sample. Hence we ex-
clude the possibility that the hump reflects market inefficiencies
at the beginning of the sample.

5) Out-of-Sample: Until now, we have used the whole
sample to draw conclusions about the relation between the
reserve margin and the spot prices. In this subsection, we give
a first indication of how stable the relation is over different
subsamples. In other words: are there different pricing regimes
over time? An alternative to our approach could be a regime
discovery algorithm proposed by Vucetic et al. [27].

For the stability check we divide our sample in three parts:
the first 5000, the second 5000 and the remaining 4904 obser-
vations. In Fig. 12 we compare the average price and the proba-
bility of spike. We see that the average price has increased, and
that the relation from the first period understates the average
price and probability of spike in the second period. The rela-
tion describing the second period is similar to the relation de-
scribing the third period. This would show a good out-of-sample
behavior. Part of the increase has been due to an increase in mar-
ginal costs. This has not been captured by our current definition
of a spike.

One way to incorporate the increase of prices would be to
include an average error over a certain period. Then, the natural
question is how many data points we should use in our data
estimation by comparing the errors out-of-sample. We will not
address this question in this paper.
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Fig. 12. For three different time periods (period 1 starting 01/10/2004: solid;
period 2 starting 29/04/2005: dashed; period 3 starting 24/11/2005: dotted), we
show the average price (top), the probability of spike (upper middle), the number
of observations (lower middle), and the number of spikes (bottom).

V. DISCUSSION AND CONCLUSION

In this paper we have shown how to create an estimate for
the supply-demand framework and how to build a simple model
for it. One of our main findings is that reserve margin should be
included into a spot electricity model to enhance performance.
Another useful area of application is the development of fun-
damental models. While most fundamental models can create
estimates of future marginal costs, in practice a link from mar-
ginal costs to market prices is needed. Our model can provide
such a link if marginal costs are driven by the reserve margin.

Our procedure is quite simple and could be applied to other
markets where estimates of available capacity are published,
e.g., in the U.K. or Germany. The U.K. market is the most sim-
ilar to the Dutch market. For the German market, it is important
to study carefully the role of interconnectors and wind produc-
tion.

Our piecewise linear fit can contain a double-hump structure
which does not comply with standard economic theory. Also our
results imply the Dutch market can spike for moderate levels of
the reserve margin. A step forward could be made if we could
group available capacity by technology, but this information is
not available.

The backbone of our relation is an assumption of stability.
We have studied the stability of our relation over different times
of day and seasons. We found it is better to specify a separate
model for different times of day, where it is especially worth-
while to split week and weekend days. Out-of-sample tests gave
promising initial results. To improve the relation, one could in-
clude an autoregressive part for the error in the spot price pre-
diction for the previous period. This is left for future research.

Our model can be extended in different directions. One of
the possible directions is the relation between spot and forward.
With a stability assumption it is possible to simulate different
underlying drivers and create a simulation of future spot prices.
Another direction is the extension to a coupled market. This

type of markets are present in the U.S. and in Nordpool. Market
integration of the Dutch, Belgian and French market [25] will
provide a new challenge for the presented model.
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